Trigonometry Special Angles

Keywords: Trigonometry of right triangles
Home Algebra Geometry Mathematical analysis Probability and Statistics

Szögfüggvények derékszögű háromszögben

s i n α = a c ,     c o s α = b c ,     t g α = b a
α=0°=2π
Trigonometry Special Angles
sin 0°
cos 0°
tg 0°
ctg 0°
0
1
0
+
α=30°=π6
Trigonometry Special Angles
sin 30°
cos 30°
tg 30°
ctg 30°
1 2
3 2
3 3
3
α=45°=π4
Trigonometry Special Angles
sin 45°
cos 45°
tg 45°
ctg 45°
2 2
2 2
1
1
α=60°=π3
Trigonometry Special Angles
sin 60°
cos 60°
tg 60°
ctg 60°
3 2
1 2
3
3 3
α=90°=π2
Trigonometry Special Angles
sin 90°
cos 90°
tg 90°
ctg 90°
1
0
+
0
α=120°=3
Trigonometry Special Angles
sin 120°
cos 120°
tg 120°
ctg 120°
3 2
1 2
3
3 3
α=135°=4
Trigonometry Special Angles
sin 135°
cos 135°
tg 135°
ctg 135°
2 2
2 2
1
1
α=150°=6
Trigonometry Special Angles
sin 150°
cos 150°
tg 150°
ctg 150°
1 2
3 2
3 3
3
α=180°=2π
Trigonometry Special Angles
sin 180°
cos 180°
tg 180°
ctg 180°
0
1
0
-
α=210°=3
Trigonometry Special Angles
sin 210°
cos 210°
tg 210°
ctg 210°
1 2
3 2
3 3
3
α=225°=4
Trigonometry Special Angles
sin 225°
cos 225°
tg 225°
ctg 225°
2 2
2 2
1
1
α=240°=3
Trigonometry Special Angles
sin 240°
cos 240°
tg 240°
ctg 240°
3 2
1 2
3
3 3
α=270°=3
Trigonometry Special Angles
sin 270°
cos 270°
tg 270°
ctg 270°
1
0
-
0
α=300°=3
Trigonometry Special Angles
sin 300°
cos 300°
tg 300°
ctg 300°
3 2
1 2
3
3 3
α=315°=4
Trigonometry Special Angles
sin 315°
cos 315°
tg 315°
ctg 315°
2 2
2 2
1
1
α=330°=3
Trigonometry Special Angles
sin 330°
cos 330°
tg 330°
ctg 330°
1 2
3 2
3 3
3


Home Algebra Geometry Mathematical analysis Probability and Statistics