Simplify the following expression:
x + y − 1 x + x y + x − y 2 x y ( y x − x y + y x + x y )
x>0 ; y>0
= x + y − 1 x + x y + x − y 2 x y ( y ( x + x y ) + y ( x − x y ) ( x − x y ) ( x + x y ) )
=x+y−1x+xy+x−y2xy·y(x+xy+x−xy)(x−xy)(x+xy)
=x+y−1x+xy+x−y2xy(2xyx(x−y))
=x+y−1x+xy+x−y2xy(2yx−y)
=x+y−1x+xy+x−yx·1(x−y)(x+y)
=x+y−1+1x+xy
=x+yx+xy·x-xyx-xy
=xx+xy-xy-yxx2-xy
=x(x-y)x(x-y)
=xx
Add the expression in brackets.
In the denominator of the expression in parentheses, highlight the pull out y as a common element!
In the parentheses, simplify the denominator using the difference of squares formula:
a-b·a+b=a2-b2
A négyzetek különbség segítségével racionalicáljuk a nevezőt!
Addition / subtraction of fractions:
ac±bc=a·c±b·cc
Difference of squares:
a2-b2=a-b·a+b
xx