A háromszög két oldala 10 cm és 14 cm, az elsővel szemben lévő szög pedig 45°. Számítsa ki a háromszög területét.
sin 45°=hcb
hc=b·sin 45°
hc=14·22=7·2·22
hc=72
a2=b2+c2-2bc·cos 45°
102=142+c2-2·14·c·22
100=196+c2-142c
196+c2-142c-100=0
c2-142c+96=0
c1,2=--142±1422-4·1·962
c1,2=142±196·2-3842
c1,2=142±82
c1,2=142±2·42=142±242
c1,2=142±222
c1=142+222=1622=8·222
c1=82
c2=142-222=1222=6·222
c2=62
T1=c1·hc2=82·722=8·7
T1=56
T2=c2·hc2=62·722=6·7
T2=42
A háromszög területe a magasságvonalak segítségével
T1=56 cm2 ∧ T2=42 cm2