MR-696 / 15. problem

Calculate the area of an isosceles triangle with a base of 12 cm, if the height corresponding to the base is equal to the segment joining the midpoints of the base and the leg.

The angle EFC is also α because the leg of the angle AF is normal to the leg CF and leg AE  is normal to leg EF (Angles with normal legs).

b2=62+ha2

b4 : ha=ha : b

ha2=b24

ha=b2

b2=62+b24|·4

4b2=4·62+4·b24

4b2-b2=4·62

3b2=4·62

b2=4·623

b=4·623=4·623=2·63·33=2·6·33=2·2·3·33

b=43

ha=b2=432=2·2·32

ha=23

A=a·ha2=12·232

A=123