MR-695 / 14. példa

A háromszög oldalai 13 cm, 14 cm és 15 cm. A háromszög legnagyobb oldalával párhuzamos egyenes egy 39 cm kerületű trapézt vág le. Számítsa ki a trapéz területét!

x+y+z+15=39

x+y+z=24

A piros vonal által létrjejött trapéz két lila magasságvonala a trapézt egy felső és egy alsó derékszögű háromszögre valamint egy középső tégalapra ossza.

Az ABC és a A1B1C háromszögek hasonlóak egymással ezért felírható:

AB¯ : A1B1¯ =CB¯ : CB1¯ = CA¯ : CA1¯

15 : x=13 : 13-y=14 : 14-z

13x=1513-y

13x=195-15y

13x+15y=195

14x=1514-z

14x=210-15z

14x+15z=210

+x+y+z=+24+13x+15y+0z=+195+14x+0y+15z=+210

+x+y+z=+24 |·(-13)+13x+15y+0z=+195+14x+0y+15z=+210

-13x-13y-13z=-312|(I+II)+13x+15y+0z=+195+14x+0y+15z=+210

+x+y+z=+24+2y-13z=-117+14x+0y+15z=+210

+x+y+z=+24|·-14-2y-13z=-117+14x+0y+15z=+210

-14x-14y-14z=-336|I+III-2y-13z=-117+14x+0y+15z=+210

+x+y+z=+24+2y-13z=-117-14y+z=-126

+x+y+z=+24+2y-13z=-117|·+7-14y+z=-126

+x+y+z=+24+14y-91z=-819|·II + III-14y+z=-126

+x+y+z=+24+2y-13z=+195-90z=-945

z=-945-90=21·452·45

z=212

2y-13·212=-117 |·2

2·2y-13·212·2=-117·2

4y-273=-234

4y=273-234

4y=39

y=394

x+394+212=24 |·4

x·4+394·4+212·2·2=24·4

4x+39+42=96

4x=96-39-42

4x=15

x=154

p+x+q=15

p+154+q=15

p+q=15-154

p+q=15·44-154=60-154

p+q=454

z2=h2+q2

h2=z2-q2

h2=2122-q2

h2=4414-q2

y2=h2+p2

h2=y2-p2

h2=3942-p2

h2=152116-p2

4414-q2=152116-p2

4414-q2=152116-p2 |·16

4414·4·4-q2·16=152116·16-p2 ·16

1764-16q2=1521-16p2

16p2-16q2=1521-1764

16p2-16q2=-243

16p2-q2=-243

16p-qp+q=-243

16p-q·454=-243

4·4·p-q·454=-243

180p-q=-243

p-q=-243180=-27·920·9

p-q=-2720

p+q=+454|I+IIp-q=-2720

2p=454-2720

2p=454-2720=454·55-2720=225-2720=19820

p=1982·20=99·22·20

p=9920

h2=y2-p2=3942-99202=152116-9801400

h2=152116·2525-981400=38025-9801400=28224400

h=28224400=28224400=16820=42·45·4

h=425

T=c+x2·h=15+15421·425

T=15·44+15421·425=604+15421·425=75421·425

T=75·14·2·425=15·54·2·21·25

T=3154=78,75