Calculate the area of a parallelogram whose diagonals are 26 cm and 30 cm, and whose side is 14 cm.
A=a·b·sin α
Based on the parallelogram theorem:
2a2+2b2=d12+d22
2b2=d12+d22-2a2
b2=d12+d22-2a22
b2=262+302-2·1422
b2=676+900-2·1962=11842=592
b2=16·37
b=16·37=16·37
b=437
The law of cosine can be written for the triangle ABC.
d22=a2+b2-2·a·b·cos α
cos α=a2+b2-d222ab
cos α=142+4372-3022·14·437
cos α=196+592-90011237
cos α=-11211237
cos α=-137
sin α=1-cos2α
sin α=1-1372
sin α=1-137=37-137=3637
sin α=637
A=a·b·sin α=14·4·37·637
A=336
The side b and the angle α must be determined. This is possible using the Parallelogram Theorem and the Cosine Theorem.
Area
Parallelogram Theorem
a2=b2+c2−2bccosα
b2=a2+c2−2accosβ
c2=a2+b2−2abcosγ
A=336 cm2