MR-683 / 3. problem

In an acute triangle with a base of 10 cm and a height corresponding to the base of 8 cm, a rectangle is inscribed whose two vertices belong to the base of the triangle, and the other two on the other two sides. If the area of the rectangle is 15 cm2, calculate its sides.

Triangle ABC is similar to triangle A1B1C1.

ABC~A1B1C

10:y=8:8-x

8y=10·8-x

A=x·y=15

y=15x

8·15x=80-10x |·x

120=80x-10x2

10x2-80x+120=0 | ·110

x2-8x+12=0

x1,2=--8±-82-4·1·122

=8±64-482

=8±162

=8±42

x1=8+42=122

x1=6

x2=8-42=42

x2=2

y1=15x1=156=3·53·2

y1=52=2,5

y2=15x2=152=7,5

x1=6 ; y1=2,5  x2=2 ; y2=7,5