MR-357. problem

We write a cone on the sphere. The center of the sphere divides the height of the cone into two sections such that the longer section equals the geometric mean of the shorter section and the total height. Determine the volume ratio of the sphere to the cone.

a
357_1.svg
R=x·x+R
R2=xx+R
1 R2=x2+xR
2  R2=x2+r2
12 R2=x2+xR=x2+r2
3  xR=r2
23R2=x2+xR
x2+Rx-R2=0
x1,2=-R±R2-4·-R22
x1,2=-R±5R22
x1,2=-R±R52=R-1±52
x2<0 x=x1
x=5-12R
V1=4R3π3
V2=r2πH3=r2πx+R3
V1V2=4R3π3r2πx+R3
V1V2=4R3πr2πx+R
=4R3πxRπx+R
=4R2xx+R
=4R25-12·R·R+5-12·R
=4R2R2·5-12·1+5-12
=45-12·1+5-12
=45-12·2+5-12
=45-12·5+12
=452-1222
=45-12
=442
=42
V1V2=2
V1V2=2