Simplify the following expression:
2xn-2x-n2xn+2x-n+4
x≠0 ; x≠-1
2xn-2x-n2xn+4x-n+4
2xn-x-n2xn+x-n+2
=xn-1xnxn+1xn+2
=xn·xn-1xnxn·xn+1+2xnxn
=x2n-1xnx2n+2xn+1xn
=xnx2n-1xnx2n+2xn+1
=x2n-1x2n+2xn+1
=xn-1xn+1xn+12
=xn-1xn+1
Subtract 2 from the denominator and the numerator.
Convert negative power exponents into positive ones!
Transform the denominator using a binomial square and the numerator using the difference of squares.
Changing a negative power exponent to a positive one:
a-n=1an
Difference of squares:
a2-b2=a-ba+b
Binomial square:
a±b2=a2±2ab+b2
Adding fractions:
ab+cd=ad+bcbd
xn-1xn+1